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ELECTRICAL RESISTIVITY OF EXPANDED 
FLUID RUBIDIUM 

J. A. ASCOUGH and N. H. MARCH 

Theoretical Chemistry Department, University of Oxjord, 5 South Purks Road, 
Oxford OX1 3 UB, England. 

(Received 4 July 1990) 

The problem of electronic transport in expanded alkali metals is explored in detail-with particular 
reference to rubidium. One objective is to assess the extent to which the self-consistent inclusion of a mean 
free path for electron-ion scattering into a formulation for electron transport, based upon the force-force 
correlation approach, could account for the observed resistivity of expanded liquid rubidium, at thermo- 
dynamic states near to the liquid-vapour coexistence curve. The results presented indicate that the 
self-consistent approach gives the same general trend with density as the traditional Bhatia-Krishnan- 
Ziman formula. Though the latter gives quantitatively better agreement with experiment, both theories fail 
as the critical point is approached as they are weak scattering treatments. At higher densities the need for 
an accurate description of the large wave number components of the pseudopotential emerges. 

KEY WORDS: Inverse transport, mean free path 

1 INTRODUCTION 

Of all the properties of liquid metals that are accessible to experiment, electrical 
resistivity offers probably the most direct means of assessing the changing role of the 
electron-ion interactions as the density is altered. Particularly for rubidium and 
caesium, the behaviour of the electrical resistivity has provided the most direct 
indication of the occurrence of a metal-insulator transition to the high density side 
of the liquid-vapour critical point in these metals, through the pioneering experiments 
of Hensel and  coworker^'.^.^. While this paper focusses on electrical resistivity 
therefore, it may be noted that the marked increase in resistivity at around twice the 
critical density also correlates with the change in sign of the temperature coefficient 
of conductivity here4, and the behaviour of the thermopower'. Hall effect measure- 
ments also indicate free electron character down to 1 g cm-3  for caesium5. 

2 FORCE-CORRELATION APPROACH T O  RESISTIVITY AND ROLE OF 
MEAN FREE PATH 

Following the early work of Bhatia and Krishnan'-*, the nearly free electron model 
of the electronic transport properties of liquid metals was developed into its present, 
well established, form by Ziman'.''. The results of this theory will be presented below, 
and compared for rubidium with the subsequent treatments of Ferraz and March", 
and the later extension by Laevens et al.". 

31 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
8
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



38 J.  A.  ASCOUGH AND N. H. MARCH 

Briefly the starting point taken by these latter workers is the theory of Rousseau, 
Stoddart and M a r ~ h ' ~ , ' ~  who derived an expression for the resistivity of an arbitrary 
array of scattering sites, in terms of the Dirac density matrix. Their model was based 
on the inverse transport approa~h'~- ' ' ,  while the derivation given in Ref. 13 owed 
much to the work of Greenwood". The result for the resistivity, R, of a given 
configuration of scattering sites, is 

This expression will form the basis for the approach to the calculation of resistivities 
of expanded fluid alkalis adopted below. In Eq. (2.1), W is the total scattering 
potential, Vis the total volume and c(r l ,  r2 E )  is the energy derivative of the Dirac 
density matrix (including spin) given by 

where $i and Ei are the electronic wave functions and energies respectively. I n  order 
to give the resistivity of a fluid, the result (2.1) has been averaged over the ionic 
configurations. As the original authors' 3 * 1 4  pointed out, to obtain an exact result 
within the one-electron framework, one would need to know the density matrix for 
each ionic configuration, and the many-particle correlation functions for the ions, to 
complete the configurational average. Approximations are evidently necessary in 
order to proceed further. 

Clearly one consequence of scattering will be to effect some modification of the 
density matrix from that corresponding to plane wave electronic states. If, however, 
this change is neglected, then the configurationally averaged form of c may be 
evaluated using the plane wave functions, as 

Now putting Eq. (2.1) into Fourier transform gives 

R = - -  nh {k'W(k)W( -k)r(k)dk 
6 V p 2 e 2  8z3p3 

where 

T ( k )  = p s (co ( r l ,  r2 ,  E,))2eik'(r1-r2)d(r, - r2) 

-~ - pm2 8(2k, - k) 
d h 4 k  

(2.3) 

(2.4) 

and 

~ ( k )  = p W(r)eik"dr. s 
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RESISTIVITY OF E X P A N D E D  Rb 39 

But if W is of the form 

W(r) = w(r - Rj) 
i 

(2.7) 

for ionic sites i ,  then 

W(k)W(-k) = NS(k))w(k)I2 (2.8) 
where S(k)  is the static structure factor of the ions. Combining these results, and using 
k: = 3n2p, gives 

3nm2 2 k r  
R =  [ k3S(k)lw(k)I2 dk 

4pe2h3k7 (2.9) 

which is precisely the Ziman f o r m ~ l a ~ ~ ' ~ .  Notice that the use of Eqs. (2.7) and (2.11) 
constitutes a separate configurational averaging of the potential and density matrix 
terms in the basic expression (2.1). 

As has been mentioned, Ferraz and March" suggested how the effects of a finite 
mean free path for electrons might be included self-consistently into the treatment 
of electron transport outlined here. Their attention focused on the function denoted 
T(k) in Eq. (2.5), noting that the Heaviside function in this term at 2k, is a consequence 
of a well-defined Fermi surface, implicit in the form of (a(r , ,  r 2 ,  E , ) )  employ- 
ed-that is Eq. (2.3). More specifically, this is directly related to the undamped 
oscillatory off-diagonal behaviour of the derivative of the density matrix. In  a first 
attempt to address the self-consistency question, Ferraz and March' used an 
approximate argument due to Bardeen" to allow for the effects of scattering, and 
wrote the configurationally averaged result 

< 4 r l ,  r2,  E,)) = r 2 ,  E,))exp(- Irl - r2I/W (2.10) 

Here, (a,)is the free electron form (2.3), while 1 represents an electronic mean free 
path. This then leads to 

1 + 4(k,.I)2 - ( k l ) ,  
r ( k )  = ~ 2pm2 [ tan-'(kl) - f tan ~ ' 

n3h4k 

and the resistivity 

(2.1 1) 

(2.12) 

The form of kT(k) is indicated in Figure 1, where the modification of the simple result 
kT(k) cc 8(2k, - k), due to finite 1, is clearly seen. The main feature is the 'softening' 
of the discontinuity at 2k,,  since behaviour at k = 0 is largely masked by the vanishing 
k 3  term already present in the integrand. By combining Eq. (2.12) with the simple 
formula 1 = hk,/pe2R,  Ferraz and March'' proposed an iterative route to a self- 
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40 J .  A. ASCOUGH AND N.  H. MARCH 
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Figure I 
indicates the limit of infinite 1. 

Plot of kT(k)  for different values of the mean free path I using Eq. (2.11). The rectangle 

consistent resistivity, by solving these together for given input S(k)  and w(k). They 
did not present numerical work on this point, but did caution that for full consistency, 
the influence of 1 on w(k) ,  by way of the dielectric function of the perturbed electron 
gas, must be incorporated. This point is pursued in Sections 3 and 4. Some limited 
implementations of the Ferraz-March scheme have since been performed for simple 
metals, using model structure factors by Khajil and Tomak21 and by Daver, Khajil 
and Tomak22. 

3 SELF-CONSISTENT SCHEME FOR THE CALCULATION O F  THE 
ELECTRICAL RESISTIVITIES OF SIMPLE LIQUID METALS 

The attempts at a self-consistent approach to the resistivity problem by Ferraz and 
March" were subsequently extended by Leavenas et [hereafter referred to as 
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RESISTIVITY OF EXPANDED Rb 41 

LMTFM.]? Their method will be adopted in the calculations here, and it is therefore 
instructive to summarize the theoretical basis for the model. 

The first important improvement was the the use of a non-local first-principles 
scattering potential. Re-writing Eq. (2.1) in the form appropriate for such a potential, 
W(r,, r2), leads to 

R = "h_ 6 Ve2 l[{{(F(r,, r;)F(r2, ri)o(r;, r2)o(r;, rl))drldrldr2dri (3.1) 

where 

F(r, r') = IV,W(r + x, r' + x ) ( , = ~  (3.2) 

W(r, r') = w(r - R,,  r' - Ri)  
i 

(3.3) 

with Ri denoting the ion sites, as before. To simplify the configurational average these 
authors assumed that the force and density matrix terms may be averaged separately. 
Then, after Fourier transformation, Eq. (3.1) becomes 

I k - k'I2S(k)l w(k, k')12a(k)a(k')dk dk' (3.4) 
h 

R =  

with 

a(k) = p (o(rl, r2 ,  Ef))e ik ' ( ' ' -")  d(r1 - r2) (3.5) s 
With this basic result LMTFM used the Ferraz-March form (2.10) for (o(rl, r 2 ,  Ef)), 
which gives 

- - ~. ~ 

1 
1 + 412(k - k f ) 2  

o(k) = 4* [ 
zh2k 1 + 4I2(k + kf)' 

However, they used a more sophisticated approach to determine the mean free path 
I, which will now be outlined. First, note that the quantity o(rl,r2, Ef) is related to 
the advanced Green function G t ( r , ,  r 2 ,  E )  by 

where the 2 allows for the inclusion of electron spin. If the configurational average 
of Gf is denoted as 9, then clearly 

(3.8) 

t Several typographical errors appear in this paper. These have been corrected in what follows here: 
see also Chapmanz3. 
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42 J .  A. ASCOUGH AND N. H. MARCH 

Now Q may be expressed in the form 

where C(k ,  E )  is the self-energy function. (The ‘ p ’  appears since in this description, 
Fourier transforms are taken to preserve dimensionality. This results in a non- 
standard definition of Q(k,  E), but this has little influence on subsequent analysis). 
To second order of perturbation theory, the self-energy may be written following 
Ballentinez4 as 

From Eqs (3.8) and (3.9) it follows that 

(3.10) 

(3.1 1 )  

where C(k,  Ef) = a(k, E,) - ib(k, E,). Taking the imaginary part of Eq. (3.10) for 
E = E, ,  substituting Eq. (3.11), then multiplying by o(k) and integrating gives 

b(k, E,-)o(k)dk = ~ j [ S ( q ) l  w(k, k’)I2o(k)a(k’)dk dk’ (3.12) s 16n2p2 

where q-k’ - k.  Defining the functions 

and 

1 I w(k, k’)I2o(k)a(k’)dk 
1 o(k)o(k’)dk Iw:ff(q)l2 = 

then Eq. (3.12) becomes 

(3.13) 

(3.14) 

(3.15) 

Now recall that (o(r,, r2 ,  E, ) )  differs from (oO(rl, r z ,  E,)) only in the off-diagonal 
elements, so that the density of states is unaltered from the free electron’ value. This 
is, of course, mk,/n2h2, and must be given by (1/8n3p) 1 a(k)dk. Furthermore, if i t  is 
assumed that the self-energy, C(k,  E,), is not too strongly dependent on k near to E,, 
then Eq. (3.15) may be simplified to 

(3.16) 
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RESISTIVITY OF EXPANDED Rb 43 

using k; = 3nzp. Returning to Eq. (3.11) one may expand the energy term in the 
denominator to linear terms in k, to give 

2bPh a(k) = 
[-hzk,(k - k,)/m]’ + bZ 

Denoting the length h2kf/2mb as I, then from Eqs. (3.16) and (3.17) 

and 

Finally, Eq. (3.4) may be written as 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

where 1, is the value determined self-consistently from Eq. (3.18). This result is 
very similar to the Ferraz-March formula (2.12), with a more general form for the 
matrix elements. It is readily confirmed that in the limit as 1 + co, d , ( q )  -+ 0(2k, - q)  
and wLff(q) -+ wk,(q), so that the Ziman result (2.9) is regained. 

Comparing Eqs. (3.6) and (3.19), one can see that for k near to k,, and large I ,  the 
two expressions for a ( k )  are very similar. In fact, as one result of the approximations 
in this derivation, the integral over k of a(k) from Eq. (3.19) is unbounded, while Eq. 
(3.6) gives the density of states at the Fermi level, as required. In the calculations 
described here, Eqs. (3.6), (3.13), (3.14) and (3.18) were used together to determine a 
consistent mean free path I,, before determining the resistivity from Eq. (3.20). (Note 
that, if Eq. (3.6) is used for a(k), then B,n is exactly the function r of Section 2, evaluated 
for 1 = 1,). 

4 INPUT TO THE RESISTIVITY CALCULATIONS 

In order to apply the scheme given in the previous section, three basic quantities are 
required as input: i) a liquid structure factor at a given density and temperature, ii) 
a bare ion pseudopotential and iii) a form for the dielectric function of the electron 
gas. For the first of these, the experimental results of Winter, Hensel, Bodensteiner 
and G l a ~ e r ’ ~  for states along the liquid-vapour coexistence curve were used. For the 
bare pseudopotential, the method of LMTFM has been followed, by using the 
energy-independent first-principles form due to Rasolt and Taylorz6. With regard to 
the screening, the influence of the mean free path 1 on the dielectric function must 
be allowed for, and so one may write 
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with 

J. A. ASCOUGH AND N. H. MARCH 

Here, no(q, I )  is the Lindhard function modified to include a finite mean free path, 
1, and as derived by LMTFM (in a form consistent with Eq. (3.6)) it may be expressed 
as 

1 ) + d ( 1  - x 2  - y’)  no(q, 1) = mkf [I - [tan-’( 2y 
n’h’ 2 1 + y’(x2 - 1) 

11 - x 2  8 x  + y - 2  In( ((xy)’ + 1 - xy’)’ + y’ 
((xy)’ + 1 + xy2)’ + y’ + (4.3) 

where x = q / 2 k ,  and y = 2k,l. The local-field term G(4) is assumed independent of 
I ,  and the form of this function used was that due to Ichimaru and Ut~urni’~.  Finally, 
following LMTFM, a vertex correction due to Rasolt28 was used, in order to describe 
the non-locality of electron-electron interactions. In the present notation this is 

where l7 and no are evaluated in the I + co limit, and Z ,  is the discontinuity in the 
single-particle occupation probability at the Fermi surface of an electron gas. The 
neglect of I in this correction term is consistent with the use of the unmodified 
local-field term, both being, in essence, higher order corrections to the simple Hartree 
self-consistent screening. Data for Z ,  were taken from the Fermi hypernetted chain 
calculations on the electron gas by Lantto” and it was found that over a range of 
interelectronic spacings (r,) spanning the region of interest here, the linear fitting 
Z ,  = 0.91-0.05 rs gave a good representation of her results (with r ,  in atomic units). 
The total screened pseudopotential term is thus given by Eq. (19) of Rasolt and 
Taylor26 evaluated with the /-dependent screening functions described, and multiplied 
by the vertex correction H(q).  

5 RESULTS O F  THE SELF-CONSISTENT RESISTIVITY CALCULATIONS 

Following the scheme outlined, the effect of mean free path corrections to Ziman 
theory resistivities was examined for expanded liquid Rb focusing on the thermo- 
dynamic states along the liquid-vapour coexistence curve for which structure factor 
data are available. For each state, a self-consistent mean free path was determined 
iteratively, according to Eq. (3.18), and when satisfactory convergence was obtained 
( %  lo-’ au) the corresponding resistivity was calculated. Using the same input 
information, Ziman theory resistivities were also evaluated, precisely as was done by 
C h a ~ r n a n ’ ~  for fluid Cs. The resistivities thus obtained for fluid Rb are plotted in 
Figure 2 as a function of density, scaled with its critical value. The self-consistent 
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RESISTIVITY OF EXPANDED Rb 45 
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5 3.6 ‘. e= 
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p,/p (critical) 

Figure 2 Shows resistivity trends as a function of density p measured in units of the critical density. 
Upper curve: self-consistent method. Lower curve: Ziman theory as implemented in present study. 

method, over the range plotted, gives results which are higher than the Ziman results 
over the whole range of the plot. This contrasts with the results of Chapman23 for 
Cs, where there is across-over of the two curves at a particular density. As Chapman 
notes, there is sensitivity of the self-consistent results to large wave number compo- 
nents of the pseudopotential. More work on this aspect is clearly required in future 
studies. Figure 3 shows resistivity versus temperature, again scaled with the critical 
temperature. Experimental results are denoted by the crosses. Up to TITrilica, - 0.8, 
the self-consistent results reflect the experimental trend but are quantitatively less 
satisfactory than the Ziman values. Both theories, however, being based on weak 
scattering assumptions, will eventually break down as the critical point is approached. 
Chapmanz3 has given a full discussion of the difficulties of the pseudopotential 
calculations for Cs; we shall not go into further details here. 
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Figure 3 Trends of resistivity with temperature. Upper curve: self-consistent method. Lower circles: 
Ziman results. Crosses show some experimental values for comparison. 

It should though be noted that the present treatment has some common elements 
with the approach of Oosten and Geerstma3' who also aimed at a self-consistent 
treatment of the nearly free electron model. 

The decrease in mean free path on expansion which is indicated by the calculations 
reported above on Rb and also by Chapman's results on Cs is entirely as expected. 
Clearly, as the free path approaches the mean ionic separation the methods used 
here become inappropriate. As the metal-insulator transition in an expanded alkali 
fiuid is approached, both electron-ion and electron-electron interactions become 
strong. 
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RESISTIVITY O F  EXPANDED Rb 47 

7 SUMMARY 

This paper has been concerned with electron transport in the liquid alkali metal Rb, 
developing further the investigation of the manner in which the increasingly impor- 
tant electron-ion and electron-electron interactions manifest themselves in physical 
properties as these materials are expanded along the liquid-vapour coexistence curve. 

The influence of finite mean free paths for electron-ion scattering in calculations 
of resistivity has been examined using a self-consistent scheme based on the force- 
force correlation approach to electron transport. When applied to liquid alkalis 
near to melting, resistivities are uniformly increased relative to those calculated using 
the traditional Ziman theory which agrees quantitatively with the experimental value 
near the melting point. For liquid rubidium it has been shown that there is sensitivity 
of the calculated resistivities to the description of the high momentum transfer region 
in the self-consistent method. 

Finally, i t  is clear that a different theory is needed near to the critical point, since 
as mentioned above there one has both strong electron-ion and electron-electron 
interactions. These aspects have been discussed by one of us elsewhere3'. 
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